Case Study – Complete Vapour Intrusion Mitigation Services for an Industrial Plant

Paul Hurst
Golder Associates Ltd.

SMART Remediation
Ottawa, ON | February 7, 2019
Case Study – Complete Vapour Intrusion Mitigation Services for an Industrial Plant

SMART REMEDIATION – OTTAWA 2019
FEBRUARY 7, 2019

VI Mitigation at an Industrial Plant

PRESENTATION OUTLINE

• Initial Desktop Review
• Preliminary Field Assessment
• Interim Mitigation
• Recurring TCE in IA
• Lessons Learned
VI Mitigation at an Industrial Plant

INITIAL DESKTOP REVIEW

- Former steel production (1890s) and small electric motor mfg (1947-1999)
- Historical data implied:
 - Significant sub-surface cVOC plume and IA exceedances
 - Potential IA exceedances of OEPA imminent hazard criteria.
- Extremely high client priority to assess VI risk and mitigate
- Concurrently with project; HVAC assessment upgrades were requested

INITIAL DESKTOP REVIEW

- Historical data suggest strong correlation between GW source, sub-slab, and IA data.

- CVOC soil/GW poorly delineated.

- Background source assessment identified only one “sparingly used” potential indoor source

- Poor floor conditions and other penetrations; large storm drain
VI Mitigation at an Industrial Plant

PRELIMINARY FIELD ASSESSMENT

• **Frenzied HVAC conditions;** multiple exhaust fans; very high temperatures

• Field Assessment with Mobile GC/ESD confirmed:
 • Sub-slab and pathway samples well above screening criteria
 • Indoor air above urgent criteria (below imminent hazard); ‘other’ PID hits largely hydrocarbons
 • Mobile lab data verified with TO-15
 • Strong sub-slab:IA correlations
 • Significant sub-slab pressure differentials; installed transducers
 • SSD pilot test reviewed highly variable sub-slab flow conditions

• ~ 60 vapor pins installed

• Initial PCE/TCE investigation with mobile lab
 • Indoor Air
 • SS
 • Pathways

• Air conveyance testing

• Limited SUMMA sampling

• HVAC assessment completed, conceptual design
VI Mitigation at an Industrial Plant
PRELIMINARY FIELD ASSESSMENT – SITE PHOTOGRAPHS

[Images of industrial plant and site photographs]

VI Mitigation at an Industrial Plant
PRELIMINARY FIELD ASSESSMENT – SITE PHOTOGRAPHS

[Images of industrial plant and site photographs]
VI Mitigation at an Industrial Plant

PRELIMINARY FIELD ASSESSMENT - SITE PLAN

VI Mitigation at an Industrial Plant

PRELIMINARY FIELD ASSESSMENT - SITE PHOTOGRAPHS

Roof drain
OEPA SS and IA Response Recommendations

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>UNITS</th>
<th>SUB-SLAB</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHRONIC</td>
<td>ACCELERATED</td>
<td>URGENT</td>
<td>IMMINENT</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/m³</td>
<td>5,000</td>
<td>16,000</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/m³</td>
<td>NA</td>
<td>290</td>
<td>880</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>UNITS</th>
<th>INDOOR AIR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHRONIC</td>
<td>ACCELERATED</td>
<td>URGENT</td>
<td>IMMINENT</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ug/m³</td>
<td>180</td>
<td>530</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ug/m³</td>
<td>NA</td>
<td>8.8</td>
<td>26</td>
<td>60</td>
</tr>
</tbody>
</table>

Recommendations regarding response action levels and timeframes for common contaminants of concern at vapor intrusion sites in Ohio – Ohio EPA, August 2016

VI Mitigation at an Industrial Plant

Site plan with sub-slab results.
VI Mitigation at an Industrial Plant

TEMPORARY DIFFERENTIAL PRESSURE TRANSDUCERS

Evidence of positive pressure gradient
(Flow from subsurface to building)
VI Mitigation at an Industrial Plant

TEMPORARY DIFFERENTIAL PRESSURE TRANSDUCERS

Evidence of a variable pressure gradient
Higher positive gradients observed when ambient temperature increased.

VI Mitigation at an Industrial Plant

AVERAGE GRADIENT BY SHIFT

<table>
<thead>
<tr>
<th></th>
<th>1947 bldg</th>
<th>1973 bldg</th>
<th>Ch 3 (Transition)</th>
<th>Ch 4 (Transition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-24 Shift 2</td>
<td>0.033</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>2-25 Shift 3</td>
<td>0.059</td>
<td>0.001</td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td>2-25 Shift 1</td>
<td>0.083</td>
<td>0.000</td>
<td>0.111</td>
<td>0.009</td>
</tr>
<tr>
<td>2-26 Shift 2</td>
<td>0.097</td>
<td>0.001</td>
<td>0.095</td>
<td>0.009</td>
</tr>
<tr>
<td>2-26 Shift 3</td>
<td>0.059</td>
<td>0.001</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>2-26 Shift 1</td>
<td>0.024</td>
<td>0.000</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>2-26 Shift 2</td>
<td>0.024</td>
<td>-0.002</td>
<td>0.077</td>
<td>0.026</td>
</tr>
<tr>
<td>2-26 Shift 3</td>
<td>0.020</td>
<td>-0.003</td>
<td>0.080</td>
<td>0.027</td>
</tr>
<tr>
<td>2-27 Shift 1</td>
<td>0.007</td>
<td>0.027</td>
<td>0.078</td>
<td>0.029</td>
</tr>
<tr>
<td>2-27 Shift 2</td>
<td>0.013</td>
<td>0.006</td>
<td>0.080</td>
<td>0.029</td>
</tr>
<tr>
<td>2-28 Shift 3</td>
<td>0.013</td>
<td>-0.003</td>
<td>0.078</td>
<td>0.028</td>
</tr>
<tr>
<td>2-28 Shift 1</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.073</td>
<td>0.024</td>
</tr>
<tr>
<td>2-28 Shift 2</td>
<td>-0.023</td>
<td>-0.014</td>
<td>0.068</td>
<td>0.021</td>
</tr>
<tr>
<td>3-1 Shift 3</td>
<td>0.032</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>3-1 Shift 1</td>
<td>0.004</td>
<td>0.001</td>
<td>0.077</td>
<td>0.028</td>
</tr>
<tr>
<td>3-1 Shift 2</td>
<td>0.000</td>
<td>0.013</td>
<td>0.071</td>
<td>0.015</td>
</tr>
<tr>
<td>3-2 Shift 3</td>
<td>0.006</td>
<td>0.012</td>
<td>0.082</td>
<td>0.020</td>
</tr>
<tr>
<td>3-2 Shift 1</td>
<td>0.028</td>
<td>0.013</td>
<td>0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>3-2 Shift 2</td>
<td>-0.006</td>
<td>0.009</td>
<td>0.066</td>
<td>0.013</td>
</tr>
<tr>
<td>3-3 Shift 3</td>
<td>0.002</td>
<td>0.007</td>
<td>0.079</td>
<td>0.013</td>
</tr>
<tr>
<td>3-3 Shift 1</td>
<td>0.013</td>
<td>0.009</td>
<td>0.069</td>
<td>0.012</td>
</tr>
</tbody>
</table>
VI Mitigation at an Industrial Plant

EVIDENCE OF STRONG INTERIOR GRADIENTS

- Smoke testing; crack and penetration sealing; air flow containment;
- New fresh air and temporary AC (to reduce pressure differentials and increase air exchanges)
- New facility-wide HVAC design and tender
- SSD “phase 1” system design and install; to work in conjunction with HVAC
- Commenced source delineation – VAP Phase 1/2

INTERIM AND SHORT-TERM MITIGATION
VI Mitigation at an Industrial Plant
TEMPORARY FRESH AIR INTAKES (1973 BUILDING)

AC reduces, but does not eliminate, positive pressure gradient from sub-slab.

VI Mitigation at an Industrial Plant
INTERIM AND SHORT-TERM MITIGATION – MIP / HpT

• Field Assessment (with MIP/Hpt) confirmed:
 • Bulk of CVOC mass in groundwater is deeper than historical data
 • Chlorinated DNAPL extended from just outside the building to inside the rear of the building
 • DNAPL present in shallow vadose clay under building
 • Vadose zone impacts limited to DNAPL area; aligns with storm drain
 • Separate source area(s) identified – those VI pathways eliminated
VI Mitigation at an Industrial Plant

STAGE 1 SSD SYSTEM, INFLUENCE AND EXTENT OF DNAPL

VI Mitigation at an Industrial Plant

SSD PHOTOGRAPHS
VI Mitigation at an Industrial Plant

REOCCURRENCE OF INDOOR AIR TCE

• New fresh air supply fans and AC maintained acceptable IA concentrations – until colder weather
• Reviewed air entrainment potential, extended stack
• New facility-wide HVAC scheduled for 2018
• Occasional TCE hits despite additional fans with heated fresh air
• Reviewed all sub-surface data to assess our delineation
• Expanded sub-slab assessment in potential data gap areas; no additional cVOC source areas found

VI Mitigation at an Industrial Plant

CONFIRMATION OF INDOOR TCE SOURCES

• Additional desktop and field evaluation
 • Compound ratio comparisons concluded TCE and other ‘pseudo-tracer’ compounds not from sub-slab sources or SSD effluent
 • Follow-up detailed interviews identified one potential intermittent source and many “hypothetical” sources including process material related
 • Time series monitoring of PCE/TCE with mobile GC/ECD established one definitive indoor source and eliminated most hypothetical sources.
• Additional temporary fresh/heated air is currently maintaining acceptable IA pending full HVAC installation
VI Mitigation at an Industrial Plant

TIME SERIES MOBILE LAB SAMPLING – DETECTS FOLLOWING USE OF AEROSOLS

MATCHING GAME – DRAW ARROWS TO MOBILE LAB HEADSPACE TCE CONCENTRATIONS

ND µg/m³ ND µg/m³ 8.0 µg/m³ 5.2 µg/m³
VI Mitigation at an Industrial Plant

Lessons Learned

- Differential Pressure Transducers
 - Confirmed highly variable conditions, temporal and spatial
 - Provided a quick understanding of building conditions
 - Informed need for HVAC upgrades as well as controlling access

- Multiple Lines of Evidence
 - Very useful for this site
 - Demonstrated that SSD or HVAC alone was not sufficient to mitigate issues

- Storm Sewer
 - Was a source but not a significant source despite proximity of DNAPL to sewer
 - Periodic sampling indicated detections but no significant hits
 - Was the maximum concentration measured - Realtime monitoring of VOCs may have provided useful data

- SDS
 - Multiple products stated no TCE, only ‘proprietary’
 - Confirmation that some had TCE in the 5 – 8 µg/m³

Thank you

Paul Hurst
Associate/Senior Environmental Engineer
Golder, Ottawa, ON
phurst@golder.com
613-592-9600 x4292