

siremlab.com

SiREM Core Service Areas

Remediation Testing

treatability

Characterization/Monitoring

Molecular Testing

Bioaugmentation Cultures

Passive Samplers for Vapour and Pore Water

Acknowledgements

Fei Luo, University of Toronto

Funding Partners:

siremlab.com

BTEX/Benzene Challenges

- 12,000 gas stations in Canada among potential sources
- BTEX comprises ~18% of gasoline
 - Benzene is typically around 1%

Benzene:

- Potent carcinogen
- Particularly mobile in groundwater due to low sorption & high water solubility
- Most difficult BTEX compound to degrade anaerobically (unsubstituted ring structure)
- Under anaerobic conditions, bottleneck to site remediation

Why Go Anaerobic for BTEX?

- Hydrocarbon sites can go anaerobic high organic loading consumes O₂
- Electron acceptors (NO₃/SO₄/CO₂) often already present in subsurface
- Anaerobic electron acceptors soluble, easier to apply/distribute compared to O₂ (e.g., epsom salts (sulfate))
- Anaerobic processes less likely to cause biofouling
- May be viable in situ remediation option for deep contamination

siremlah ...com

Genomic Applications Partnership Program Project

Overview of Project

BTEX Culture Scale Up

Treatability Testing

Genomics/
Development of
Molecular Tools

Federal NSN Approval *underway

Field Pilot
Application
*planning stages

ORM2 Anaerobic Benzene Degrader

- Benzene specialist derived from an oil refinery site in 2003
- ORM2 is a Deltaproteobacterium
- Produces enzymes that ferment benzene
- Slow growing ~ 30 day doubling time

siremlah . com

DGG-B Culture - ORM2's Home

- DGG-B successfully scaled up to commercial volumes
 - ➤ Benzene degradation rate = 0.3 mg/L/day
 - ➤ 10¹⁰ ORM2/L

Treatability Testing Scope

BTEX-contaminated materials from 10 sites were assessed for their anaerobic benzene bioremediation potential

Tested:

- > Intrinsic bioremediation
- Biostimulation (nitrate or sulfate)
- > DGG-B bioaugmentation

- Anaerobic benzene degraders (ORM2, GenPepto) and functional genes (abcA) detected in all wells
- Intrinsic benzene degraders comprise < 0.01% of total bacterial populations (**GenBac**).

Some Lessons Learned Anaerobic BTEX

- Treatability testing indicates NO₃/SO₄/CO₂ are suitable electron acceptors
- Indigenous benzene degraders widely detected but at low proportions (<0.01%) and much lower than optimal abundance (10⁷-10⁸/L)
- Bioaugmentation possibly required even where indigenous benzene degraders present (slow growth rates) -Application volumes may be higher than other cultures
- Benzene degradation in the presence of TEX compounds slower than benzene alone-may need to treat TEX first

siremlah . com

Upcoming Work...

- Identification of enzymatic pathways for benzene fermentation in ORM2
 improved molecular tools for monitoring anaerobic benzene
- Environment Canada Regulatory Approval
- Field applications of ORM2 benzene culture (2019) NJ, NC, SK
- Scale-up of existing TEX cultures to commercial volumes
 + development of associated molecular tests

Thank you for your Attention!

Further Information

Sandra Dworatzek (sdworatzek@siremlab.com)

siremlab.com 1-866-251-1747

